Applied Science Bridging Course

Name:			

Which course did you do at GCSE? Combined F Combined H Triple Combined H

Congratulations on choosing to study Applied Science in our Sixth Form. We hope that you really enjoy the subject and your time in our lessons.

To give you an idea of the main topics that you will be studying at the start of your course we would like you to prepare the following material to show that you are prepared to do some work before joining us in September. This work will form part of your Applied Science notes. You will need to research the topics using websites, textbooks and revision guides. If you get stuck then email us at <u>sthomas@stjosephs.uk.net</u> for Biology or <u>twillis@stjosephs.uk.net</u> for Chemistry & Physics.

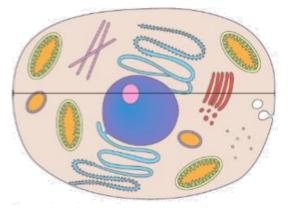
<u>Please complete your work in this booklet and bring to your first Applied Science lesson in</u> <u>September.</u>

We look forward to meeting and working with you.

Mr S B Thomas Head of Science

Mr T M Willis Head of Biology

Unit 1 Biology


- Draw a large, labelled diagram of an animal cell as seen under an electron microscope. <u>Do</u> <u>not print out a copy from the internet – you need to hand draw it.</u> Your diagram should have the following labels on it:
 - a. Nucleus
 - b. Mitochondria
 - c. Smooth endoplasmic reticulum
 - d. Rough endoplasmic reticulum
 - e. Lysosome
 - f. Golgi body/apparatus
 - g. Ribosomes
 - h. Cell surface membrane
- 2. Make a table explaining the **function** of each of the above structures.

3. Show all your working out for the following question:

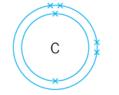
Work out the magnification for the diagram.

The actual size of the cell shown in the image is 200 µm.

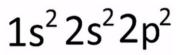
- Use your ruler to measure the size of the cell shown in the image in mm.
- 2 The actual size of the cell is 200 µm. You need to convert this to mm so they are both in the same units.
- Put both figures into the magnification equation and work out the magnification.

4. Copy & complete the table below to compare prokaryotic & eukaryotic cells:

Prokaryotic	Eukaryotic
1	
2	
3	


- 5. Draw labelled diagrams of the following cells & describe & explain how they are adapted for their functions:
 - a. Palisade mesophyll cell
 - b. Root hair cell
 - c. Sperm cell
 - d. Egg cell
 - e. Red blood cell
 - f. White blood cell
- 6. Describe each of these types of tissue: epithelial, endothelial, muscular & nervous.

<u>Unit 1 Biology – space for answers</u>


Unit 1 Chemistry

A copy of the periodic table is found on the last page of the booklet to help you.

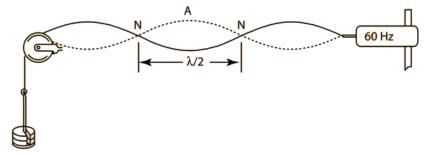
1. Draw the electron structures of the first 20 elements in the periodic table using Bohr Theory. For example here is carbon:

2. Research how to write the electron structures of the first 20 elements to show the subshells. For example here is carbon:

3. Create a table like the one below to describe different types of bonding:

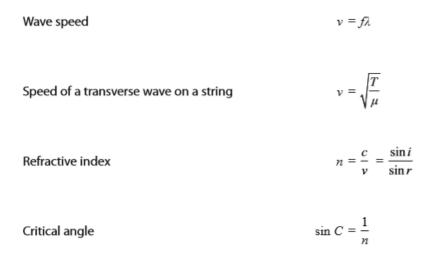
	Found	Bonding	Properties	<u>Examples</u>
<u>Ionic</u>				
<u>Simple</u> <u>Molecular</u> (covalent)				
<u>Giant</u> <u>Covalent</u>				
<u>Metallic</u>				

- 4. Draw dot & cross diagrams for the molecules: sodium chloride & carbon dioxide.
- 5. Write balanced symbol equations for the reactions of these elements with oxygen: magnesium, carbon, aluminium & sodium.
- 6. Plot a graph to show the melting points of the first 20 elements:


Element	Melting Point (°K)	Element	Melting Point (°K)		
Hydrogen	14	Sodium	371		
Helium	1	Magnesium	922		
Lithium	454	Aluminium	933		
Beryllium	1551	Silicon	1683		
Boron	Boron 2573		317		
Carbon	3823	Sulphur	386		
Nitrogen	64	Chlorine	173		
Oxygen 55		Argon	84		
Fluorine	54	Potassium	336		
Neon	25	Calcium	1112		

<u>Unit 1 Chemistry – space for answers</u>

Unit 1 Physics


A copy of the physics equations is found below to help you.

- Draw a transverse & a longitudinal wave. Label the key features of each wave & describe them.
- 2. Using the correct equation, show all working out to calculate:
 - a. Wavespeed when the frequency is 50Hz & wavelength is 1.5m.
 - b. Frequency when wavespeed is 306ms⁻¹ & wavelength is 18m.
 - c. Wavelength when wavespeed is 14.76ms⁻¹ & frequency is 3.6Hz.
- 3. Describe & explain how to create a standing wave:

- 4. Draw labelled light ray diagrams with a pencil & ruler to show the following:
 - a. Reflection in a mirror.
 - b. Refraction as light passes through a rectangular glass block.
 - c. Total internal reflection in a fibre optic cable.
- 5. Research how an endoscope works & why this is useful in medicine.
- 6. Draw a labelled diagram of the electromagnetic spectrum & describe uses for each part of the spectrum.

Formulae sheet

Inverse square law in relation to the intensity of a wave $I = \frac{k}{r^2}$

Unit 1 Physics – space for answers

The Periodic Table of Elements

1	2											3	4	5	6	7	0 (8)
							1.0 H hydrogen										(18) 4.0 He helium
(1)	(2)			Key			1]				(13)	(14)	(15)	(16)	(17)	2
6.9	9.0		relat	ive atomic	mass							10.8	12.0	14.0	16.0	19.0	20.2
Li	Be		ato	mic sym	bol							В	c	N	0	F	Ne
lithium 3	beryllium 4		atomic	name (proton) r	number							boron 5	carbon 6	nitrogen 7	axygen 8	fluorine 9	neon 10
23.0	24.3											27.0	28.1	31.0	32.1	35.5	39.9
Na	Mg											Al	Si	P	S	CI	Ar
sodium 11	magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
K potassium 19	Ca calcium 20	Sc scandium 21	Ti titanium 22	V vanadium 23	Cr chromium 24	Mn manganese 25	Fe iron 26	Co cobalt 27	Ni nickel 28	Cu copper 29	Zn zinc 30	Ga gallium 31	Ge germanium 32	As	Se selenium 34	Br bromine 35	Kr krypton 36
85.5	87.6	88.9	91.2	92.9	95.9	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
Rb rubidium 37	Sr strontium 38	Y yttrium 39	Zr zirconium 40	Nb niobium 41	Mo molybdenum 42	Tc technetium 43	Ru ruthenium 44	Rh rhodium 45	Pd palladium 46	Ag silver 47	Cd cadmium 48	In indium 49	Sn tin 50	Sb antimony 51	Te tellurium 52	l iodine 53	Xe xenon 54
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[209]	[210]	[222]
Cs caesium 55	Ba ^{barium} 56	La* lanthanum 57	Hf hafnium 72	Ta tantalum 73	W tungsten 74	Re rhenium 75	Os osmium 76	lr iridium 77	Pt platinum 78	Au gold 79	Hg mercury 80	Tl thallium 81	Pb lead 82	Bi bismuth 83	Po polonium 84	At astatine 85	Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh ^{bohrium} 107	[277] Hs hassium 108	[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111		ements with atomic numbers 112-116 have been reported but not fully authenticated					rted
110-001			140	141	144	[147]	150	152	157	159	163	165	167	169	173	175	1
* Lanthanide series Ce Pr			Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Ho	Er	Tm	Yb	Lu			
 Actinide series 			cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71	
			232 Th thorium 90	[231] Pa protactinium 91	238 U uranium 92	[237] Np neptunium 93	[242] Pu plutonium 94	[243] Am americium 95	[247] Cm ountum 96	[245] Bk berketium 97	[251] Cf californium 98	[254] Es einsteinium 99	[253] Fm fermium 100	[256] Md mendelevium 101	[254] No nobelium 102	[257] Lr lawrencium 103	